Chemotaxis of Escherichia coli to L-serine.

نویسندگان

  • Rajitha R Vuppula
  • Mahesh S Tirumkudulu
  • K V Venkatesh
چکیده

A novel experimental technique was used to quantify the motion of E. coli to varying serine concentrations and gradients so as to capture the spatial and temporal variation of the chemotactic response. The average run speed and the cell diffusivity are found to be dependent on the serine concentration. The measured diffusivities were in the range of 1.2-2.5 x 10 (-10) m(2) s(-1). The study revealed that the rotational diffusivity of the cells, induced by the extracellular environment, also varies with the serine concentration. The drift velocity increased with serine gradients reaching a maximum value of approximately 5.5 microm s(-1) at 1.6 microM microm(-1) after which it decreased. Experimental analysis demonstrated the interdependence of run speed, rotational diffusivity and drift velocity that characterizes the motion. Further, the motion was found to critically depend on the oxygen concentration and energy level of the cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemotaxis toward amino acids in Escherichia coli.

Escherichia coli cells are shown to be attracted to the l-amino acids alanine, asparagine, aspartate, cysteine, glutamate, glycine, methionine, serine, and threonine, but not to arginine, cystine, glutamine, histidine, isoleucine, leucine, lysine, phenylalanine, tryptophan, tyrosine, or valine. Bacteria grown in a proline-containing medium were, in addition, attracted to proline. Chemotaxis tow...

متن کامل

The involvement of mutation in the serine 83 of quinolone resistant determining regions of the GyrA Gene in resistance to ciprofloxacin in Escherichia coli .

Appearance of bacteria resistant to antibacterial agents puts physicians in trouble and threatens the health of the world. The rapid development of bacterial resistance in Escherichia coli to ciprofloxacin makes difficult the treatment of infectious diseases. So, detection of the locations of possible mutations in gyrase A gene ( gyrA ) in these mutants is very important to determine the mech...

متن کامل

The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli.

The chemotaxis system plays an essential role in swarm cell differentiation and motility. We show in this study that two (Tsr and Tar) of the four chemoreceptors in Escherichia coli can support swarming individually, but sensing their most powerful chemoattractants is not necessary. Conditions that abolish chemotaxis toward serine (presence of serine concentrations that saturate Tsr, or mutatio...

متن کامل

Single-cell E. coli response to an instantaneously applied chemotactic signal.

In response to an attractant or repellant, an Escherichia coli cell controls the rotational direction of its flagellar motor by a chemotaxis system. When an E. coli cell senses an attractant, a reduction in the intracellular concentration of a chemotaxis protein, phosphorylated CheY (CheY-P), induces counterclockwise (CCW) rotation of the flagellar motor, and this cellular response is thought t...

متن کامل

Chemotaxis of Escherichia coli to pyrimidines: a new role for the signal transducer tap.

Escherichia coli exhibits chemotactic responses to sugars, amino acids, and dipeptides, and the responses are mediated by methyl-accepting chemotaxis proteins (MCPs). Using capillary assays, we demonstrated that Escherichia coli RP437 is attracted to the pyrimidines thymine and uracil and the response was constitutively expressed under all tested growth conditions. All MCP mutants lacking the M...

متن کامل

Responses of Escherichia coli bacteria to two opposing chemoattractant gradients depend on the chemoreceptor ratio.

Escherichia coli chemotaxis has long served as a simple model of environmental signal processing, and bacterial responses to single chemical gradients are relatively well understood. Less is known about the chemotactic behavior of E. coli in multiple chemical gradients. In their native environment, cells are often exposed to multiple chemical stimuli. Using a recently developed microfluidic che...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical biology

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2010